Saturday, January 1, 2011

Electrochemistry : 10.3 : Electrolysis cell

VOLTAN CELL VS ELECTRIOLYSIS CELL .

 
Voltaic cell :
  • use a spontaneous reaction to generate electric energy. 
Electrolysis :
  • use electric energy to drive non- spontaneous energy.

VOLTAIC CELL.    
ELECTROLYTIC
  • electrons generate at anode (-)    
  • Electrons remove from anode (+)
  • electrons consumed at cathode (+)
  • Electrons supplied to cathode (-)
  • electrons flow from anode(-) to cathode (+)    
  • Electron flow anode (+) to cathode (-)

ELECTROLYSIS 
  • Splitting ('lysing') of a substance by input of electrical energy.
  • To decompose a compound into it element.

 
ELECTROLITE IN AN ELECTROLYTIC CELL.

1. Can be :
  • pure compound. 
    ex : H2O , molten salt

 
  • Aqueous solution of salt.
    ex : NaCI(aq) Na2SO4 (aq)

 
ELETROLYSIS OF PURE MOLTEN SALT

 
Example : molten NACI 
   
Anode     (oxidation)    :                              2Cl (l) ------ Cl2(g) + 2e-
Cathode (reduction)    :                 2Na+ (l) + 2e- ------ 2Na (s)
Overall                           :            2Na+ (l) + 2Cl (l) ------ 2Na + Cl2 (g) 

 
    *anion oxidised at anode!
    *cation reduced at cathode!

 
ELECRTROLYSIS OF WATER

 
    Anode (oxidation)                     2H2O(l) ------ O2(g) + 4H+(aq) + 4e-
    Cathode (reduction)         4H2O(l)+ 4e- ------ 2H2(g) + 4OH-(aq)
    Overall                                        2H2O(l) ------ 2H2(g) + O2(g)
                      [Note : 4H+(aq) + 4OH-(aq) ------ 4H2O(l)]
  • volume of H2 : O
                          = 2 : 1
  • electrode : inert (Pt, etc )
  • H2O oxidized at cathode produce O2
  • H2O reduce at cathode to produce H2
  • water can be oxidized and reduced.

ELECTROLYSIS OF AQUEOUS IONIC SOLUTION 

  • Aqueous solution of salt are mixture of many species (ions and HO2)
  • So we have to compare various electrode potentials (E) to predict.
     
PREDICTING ELECTROLYSIS PRODUCT
  • When two half- reaction are possible at an electrode.
     Cathode    : reduction with more positive E° occurs.
     Anode    : oxidation with more negative E° occurs.

 
CATION OF ACTIVE METALS (that cannot be reduced) 
  • Cations of metal in group (1) and (2) and A 1
  • They are not reduced (E° more negative)
  • H2O reduced to H2 and OH 
Example: Na2SO4(aq)

Species present in solution: Na+ , SO42-, H2

At cathode(-):
 Na+(aq) + e- ------ Na(s)                             E= -2.71 V
2H2O(l) + 2e- ------ H2(g) + 2OH- (aq)        E= -0.83 V

ANION (OXOANIONS AND F) (cannot be oxidised)
  • Common oxoanion such as SO42-, CO32-, HO3-, AND PO43-, (AND F) are not oxidized.
  • Because the central atom already at it highest oxidation state.
  • H2O oxidixed to O2 and H+
EXAMPLE :Na2SO4(aq) 

Special present in the solution: Na+, SO42-, H2O

At anode(+): 
2H2O ------ O(g) + 4H+(aq) + 4e-

CATION OF LESS ACTIVE METALS (can be reduce)
  • Cation of Au, Ag, Cu, Cr, Pb and Cd
  • They are reduce at cathode (E° more +ve)
Example: AgNO(aq) 

Species present in the solution: Ag+ , NO-, H2O

At cathode(-):
 Ag+(aq) + e- ------ Ag(s)
2H2O(l) + 2e- ------ H(g) + 2OH-(aq)

HALIDES THAT CAN BE OXIDIZER
  • I-, Br-, Cl-, except F
  • The concentration must be high
Example : NaCl(aq)

Species present in the solution : Na+, Cl-, H2O

At cathode(-):
2H2O(l) + 2e- ------ H2(g) + 2OH-(aq)

At anode(+):
2Cl-(aq) ------ Cl2(g) + 2e-

SUMMARY ON PREDICTING ELECTROLYSIS PRODUCT
  • Which species will be reduced : Au3+(aq) or H2O
ans : Au3+ 
Au3+(aq) + e- ------ Au(s)
Au3+ is ion of less active metal (E more positive).
  • Which species will be reduces : NA+(aq) or H2O
ans : H2O    
2H2O(l) + 2e- ------ H2(g) + 2OH-(aq)
Na+ is ion of active metal (E more negative).
  • Which species will be oxidised:
ans : H2O    
2H2O(l) + O(g) ------ 4H+(aq) + 4e-
SO­­­­42- is an oxoanion (cannot be oxidised because the central atom alreary at the highest oxidation states).
  • Which species will be oxidized: CL (aq) or H2o
ans : Cl        
2Cl-(aq) ------ Cl2(g) + 2e-
hallides (except F-) can be oxidized (due to overvoltage).


EFFECT OF CONCENTRATION

Ex: Concentration NaCl(aq)

At cathode (-)    : 2H2O(l) + 2e- ------ H2(g) + 2OH-(aq)
At anode (+)      :          2Cl-(aq) ------ Cl2(g) + 2e-

 
EXAMPLE : dilute NaCl(aq)
At cathode (-)      4H2O(l) + 4e- ------ 2H2(g) + 4OH-(aq)
At anode (+)                  2H2O(l) ------ O2(g) + 4H+(aq) + 4e-

Overall                            2H2O(l) ------ 2H2(g) O2(g)

TYPE OF ELECTRODE 
  • Inactive electrode such as graphite and Pt(s) are normally use in electrolysis.
    -They do not involve in the reaction
  • Active electrodes such as metal (anode) dissolve to form metallic ions
    EXAMPLE : Electrolysis of using inert electrode

  • Cathode :               Cu2+(aq) + 4e- ------ 2Cu (s)
  • Anode     :                           2H2O(l) ------ O2(g) + 4 H+ (aq) + 4e-        
  • Overall    :      2H2O(l) + 2Cu2+(aq) ------ 2Cu(S) + O2(g) + 4 H+ (aq)
     
FARADAY LAW
  • Amount of substance produce of each electrode is directly proportional to quantity of charge flowing through the cell
  • Also called Faraday's First Law of electrolysis.

CALCULATING USING FARADAY'S LAW
  • Main steps
    • Balance half reaction to find number of moles of electrons.
    • Needed per mole product.
    • Use Faraday's constant (96500C / mol ) to find corresponding charge.
    • Use molar mass / mole to find charge needed for a given mass / mole of product

ELECTRIC CHARGE (Q)

Charge ( Q )         =    Current ( I )    ×    time ( t )
Unit Coulomb , C        Ampere , A        Second , s

No comments:

Post a Comment