Saturday, January 1, 2011

Electrochemistry : 10.3 : Electrolysis cell

VOLTAN CELL VS ELECTRIOLYSIS CELL .

 
Voltaic cell :
  • use a spontaneous reaction to generate electric energy. 
Electrolysis :
  • use electric energy to drive non- spontaneous energy.

VOLTAIC CELL.    
ELECTROLYTIC
  • electrons generate at anode (-)    
  • Electrons remove from anode (+)
  • electrons consumed at cathode (+)
  • Electrons supplied to cathode (-)
  • electrons flow from anode(-) to cathode (+)    
  • Electron flow anode (+) to cathode (-)

ELECTROLYSIS 
  • Splitting ('lysing') of a substance by input of electrical energy.
  • To decompose a compound into it element.

 
ELECTROLITE IN AN ELECTROLYTIC CELL.

1. Can be :
  • pure compound. 
    ex : H2O , molten salt

 
  • Aqueous solution of salt.
    ex : NaCI(aq) Na2SO4 (aq)

 
ELETROLYSIS OF PURE MOLTEN SALT

 
Example : molten NACI 
   
Anode     (oxidation)    :                              2Cl (l) ------ Cl2(g) + 2e-
Cathode (reduction)    :                 2Na+ (l) + 2e- ------ 2Na (s)
Overall                           :            2Na+ (l) + 2Cl (l) ------ 2Na + Cl2 (g) 

 
    *anion oxidised at anode!
    *cation reduced at cathode!

 
ELECRTROLYSIS OF WATER

 
    Anode (oxidation)                     2H2O(l) ------ O2(g) + 4H+(aq) + 4e-
    Cathode (reduction)         4H2O(l)+ 4e- ------ 2H2(g) + 4OH-(aq)
    Overall                                        2H2O(l) ------ 2H2(g) + O2(g)
                      [Note : 4H+(aq) + 4OH-(aq) ------ 4H2O(l)]
  • volume of H2 : O
                          = 2 : 1
  • electrode : inert (Pt, etc )
  • H2O oxidized at cathode produce O2
  • H2O reduce at cathode to produce H2
  • water can be oxidized and reduced.

ELECTROLYSIS OF AQUEOUS IONIC SOLUTION 

  • Aqueous solution of salt are mixture of many species (ions and HO2)
  • So we have to compare various electrode potentials (E) to predict.
     
PREDICTING ELECTROLYSIS PRODUCT
  • When two half- reaction are possible at an electrode.
     Cathode    : reduction with more positive E° occurs.
     Anode    : oxidation with more negative E° occurs.

 
CATION OF ACTIVE METALS (that cannot be reduced) 
  • Cations of metal in group (1) and (2) and A 1
  • They are not reduced (E° more negative)
  • H2O reduced to H2 and OH 
Example: Na2SO4(aq)

Species present in solution: Na+ , SO42-, H2

At cathode(-):
 Na+(aq) + e- ------ Na(s)                             E= -2.71 V
2H2O(l) + 2e- ------ H2(g) + 2OH- (aq)        E= -0.83 V

ANION (OXOANIONS AND F) (cannot be oxidised)
  • Common oxoanion such as SO42-, CO32-, HO3-, AND PO43-, (AND F) are not oxidized.
  • Because the central atom already at it highest oxidation state.
  • H2O oxidixed to O2 and H+
EXAMPLE :Na2SO4(aq) 

Special present in the solution: Na+, SO42-, H2O

At anode(+): 
2H2O ------ O(g) + 4H+(aq) + 4e-

CATION OF LESS ACTIVE METALS (can be reduce)
  • Cation of Au, Ag, Cu, Cr, Pb and Cd
  • They are reduce at cathode (E° more +ve)
Example: AgNO(aq) 

Species present in the solution: Ag+ , NO-, H2O

At cathode(-):
 Ag+(aq) + e- ------ Ag(s)
2H2O(l) + 2e- ------ H(g) + 2OH-(aq)

HALIDES THAT CAN BE OXIDIZER
  • I-, Br-, Cl-, except F
  • The concentration must be high
Example : NaCl(aq)

Species present in the solution : Na+, Cl-, H2O

At cathode(-):
2H2O(l) + 2e- ------ H2(g) + 2OH-(aq)

At anode(+):
2Cl-(aq) ------ Cl2(g) + 2e-

SUMMARY ON PREDICTING ELECTROLYSIS PRODUCT
  • Which species will be reduced : Au3+(aq) or H2O
ans : Au3+ 
Au3+(aq) + e- ------ Au(s)
Au3+ is ion of less active metal (E more positive).
  • Which species will be reduces : NA+(aq) or H2O
ans : H2O    
2H2O(l) + 2e- ------ H2(g) + 2OH-(aq)
Na+ is ion of active metal (E more negative).
  • Which species will be oxidised:
ans : H2O    
2H2O(l) + O(g) ------ 4H+(aq) + 4e-
SO­­­­42- is an oxoanion (cannot be oxidised because the central atom alreary at the highest oxidation states).
  • Which species will be oxidized: CL (aq) or H2o
ans : Cl        
2Cl-(aq) ------ Cl2(g) + 2e-
hallides (except F-) can be oxidized (due to overvoltage).


EFFECT OF CONCENTRATION

Ex: Concentration NaCl(aq)

At cathode (-)    : 2H2O(l) + 2e- ------ H2(g) + 2OH-(aq)
At anode (+)      :          2Cl-(aq) ------ Cl2(g) + 2e-

 
EXAMPLE : dilute NaCl(aq)
At cathode (-)      4H2O(l) + 4e- ------ 2H2(g) + 4OH-(aq)
At anode (+)                  2H2O(l) ------ O2(g) + 4H+(aq) + 4e-

Overall                            2H2O(l) ------ 2H2(g) O2(g)

TYPE OF ELECTRODE 
  • Inactive electrode such as graphite and Pt(s) are normally use in electrolysis.
    -They do not involve in the reaction
  • Active electrodes such as metal (anode) dissolve to form metallic ions
    EXAMPLE : Electrolysis of using inert electrode

  • Cathode :               Cu2+(aq) + 4e- ------ 2Cu (s)
  • Anode     :                           2H2O(l) ------ O2(g) + 4 H+ (aq) + 4e-        
  • Overall    :      2H2O(l) + 2Cu2+(aq) ------ 2Cu(S) + O2(g) + 4 H+ (aq)
     
FARADAY LAW
  • Amount of substance produce of each electrode is directly proportional to quantity of charge flowing through the cell
  • Also called Faraday's First Law of electrolysis.

CALCULATING USING FARADAY'S LAW
  • Main steps
    • Balance half reaction to find number of moles of electrons.
    • Needed per mole product.
    • Use Faraday's constant (96500C / mol ) to find corresponding charge.
    • Use molar mass / mole to find charge needed for a given mass / mole of product

ELECTRIC CHARGE (Q)

Charge ( Q )         =    Current ( I )    ×    time ( t )
Unit Coulomb , C        Ampere , A        Second , s

Electrochemistry : 10.2 Nernst Equation


NERNST EQUATION 
  • Cell potential (E°cell) under any condition
                  Ecell = E°cell – (RT/nF) ln Q

R: universal gas constant.            Q : reaction quontient.

N: no. of e- transferred in             T : absolute temperature (X)

balanced redox reaction.

F : charge of 1 mol of e"96.500 C/ mol e-


Example:


Cd (s) + 2Ag+ (aq) ------ Cd2+(aq) + 2Ag (s)



    Q=[Cd2+]/[Ag+]2

 

Ecell At 25°C (298K)


 

    Ecell = E°cell(RT/nF) ln Q         (convert to logarithm)


    Ecell = E°cell - (0.0592/N) log Q  

 

            

EFFECT OF CONC . ON CELL POTENTIAL.

  

 Ecell = E°cell - (RT/nF) ln Q  
          

EXAMPLE 1:


 

Zn (S) +Cu2+ (aq) ------ Zn2+ (aq) + Cu (s)


    
Q=[Cd2+]/[Ag+]2


WHEN Q < 1 = [reactant] > [product]

                       = in Q < 0 , so Ecell > E°cell



WHEN Q > 1 = [reactant] = [product]

                       = in Q = 0 , so Ecell = E°cell



WHEN Q > 1 = [reactant] < [product]

                       = in Q > 0 , so Ecell < E°cell


 

WHEN Q = Kc


    Ecell = E°cell - (0.0592/N) log Q
        

  • Ecell = O                           
  • The system reach equilibrium.
  • No more energy release.
  • Cell can do no more wore.

Electrochemistry : 10.1 Galvanic Cell (continued)


 SPONTANEOUS REACTION

  • occurs as the result of different ability of metal to give up their electron to flow through the circuit.

 

CELL POTENTIAL (ECell)

  • different in electrical potential of electrodes
  • also called voltage or electromotive force (e.m.f)

 

Ecell > 0

  • sponteneous reaction
    • The more positive Ecell
    • The more work the can do
  • The further the reaction proceed to right

 

Ecell < 0

  • Non spontaneous cell reaction

 

ECell = 0

  • The reaction has reach equilibirum
  • The cell can do no more work.

 

SI UNIT CELL POTENTIAL

  • unit = volt (V)
  • 1V = 1J/C
C = coulumb (SI unit of electrical charge)


 

STANDARD CELL POTENTIAL (E0cell)

  • Different in electrical potential of electrodes measured at a specified temperature (usually 298k) with all components in their standard states.
  • standard state 
    • 1 atm for gaseous
    • 1 M for solution
    • Pure solid for electrodes
STANDARD ELECTRODE (HALF CELL) POTENTIAL (E0half-cell)

  • potential associate with a given half-reaction (electrode compartment) when all component are in their standard states.
E0half cell = E0anode or E0cathode

  • also call standard reduction potential.
  • example : 
                         Zn2+(aq) + 2e- ------ Zn(s) E0zinc (E0anode)

                        Cu2+(aq) + 2e- ------ Cu(s) E0copper(E0cathode)

                    Zn(s) + Cu2+ (aq) ------ Zn2+ (aq) + Cu(s)


*changing the balancing coefficients of a half-reaction does not change E0 value because electrode potential are intensive properties –does not depend on amount



E0cell AND E0half cell

  • Example : 
Half cell reation

                            Cu2+(aq) + 2e- ------ Cu(s)
                         Zn(s) + Cu2+(aq) ------ Zn2+(aq) + Cu(s)

                         Zn(s) + Cu2+(aq) ------ Zn2+(aq) + 2e-
 

  • E0cell = E0cathode – E0anode

 

STANDARD HYDROGEN ELECTRODE

  • specially prepared platinum electrode immersed in a 1M aqueous solution of a strong acid,H+(aq) or H3O+(aq), through which H2 gas at 1 atm is bubled

DETERMINING E0half cell



  • Use standard hydrogen electrode (SHE)
  • standard reference half-cell

    2H+ (aq, 1m) + 2e- ------ H2 (g,1atm) E0 ref= OV
         Zn2+ (aq, 1m) + 2e- ------ Zn (s, 1atm) E zinc= ?

Zn(s) │ Zn2+ (1M) ││ H+ (1M) │ H2 (1atm) │ Pt (s)
E0 cell  = E0 cathode – E0 anode

              = E0 ref – E0 zinc

0.76 V  = 0.00 V – E0 zinc

E0 zinc  = -0.76 V



Pt(s) │ H2 (1atm) │ H+ (1M) │ Cu2+ (1M) │ Cu (s)
  
Anode : H2 (1atm) 2H+ (1M) +2e-

Cathode : 2e- + Cu2+ (1M)     Cu (s)



H2 (1atm) + Cu2+ (1M)     Cu (s) + 2H+ (1M)

 
RELATIVE STRENGH OF OXIDIZING AND REDUCTING AGENT

  • Example:
Cu2+(aq) + 2e- ------ Cu (s) E0 = 0.34 V
2H+ (aq) + 2e- ------ H2 (g) E0 = 0.00 V
Zn2+ (aq) + 2e- ------ Zn (s) E0 = -0.76 V
  • The more positive E0 value, the more tendency to be reduced
  • Strength of oxidizing agent (reactant)
    Cu2+ > H+ > Zn2+
  • Strength of reducing agent (product)
    Zn > H2 > Cu

STANDARD REDUCTION POTENTIAL

  • All value are relative to hydrogen electrode
  • Strength of oxidizing agent – increase up
  • Strength of reducing agent – increase down
  • Half-cell component usually appear in the same order as in the half-reaction
                                                 Cu2+ (aq) + 2e- ------ Cu (s)                        (reducing)
                                                                  Zn (s) ------ Zn2+ (aq) + 2e-        (oxidizing)
                                             Cu2+ (aq) + Zn (s) ------ Zn2+ (aq) + Cu(s)    (overall)
Cell notation : the coefficient is not involve


 

WRITING SPONTANEOUS REDOX REACTION



Zn(s) + Cu2+ (aq) ------ Zn2+ (aq) + Cu(s)


 

Zn     - stronger reducing agent

Cu2+ - stronger oxidizing agent

Zn2+  - weaker (0.9)

Cu     - weaker (0.9) 
  • stronger oxidizing agent : E0 larger (more positive)
  • stronger reducing agent : E0 smaller (more negative)
Cu2+ (aq) + 2e- Cu(s) E0: 0.34 V
Zn2+ (aq) + 2e- Zn(s) E0: - 0.76 V
  • How to determine anode (oxidation) and cathode (reduction) for spontaneous reaction, E0cell > 0 ?
  • Strong reducing agent = E0 larger (positive)
                                                 = E0 cathode (reduction)


Reduction: Cu2+ (aq) + 2e- ------ Cu (s) E0 =0.34V

Oxidation :                  Zn (s) ------ Zn2+ (aq) + e- E = - 0.76V



  • Stronger reducing agent     = E0 smaller
                                                         = E0 anode (oxidation)



PREDICTING SPONTANEOUS REDOX REACTION USING DIAGONAL RULE

  • Under standard – state condition, any species on the left of a given half-cell reaction will react spontaneously with a species that appear on the-right of any half-cell reaction located below it,
  • diagonal rule !!!


Cu2+ (aq) + 2e- ------ Cu (s)     E0 = 0.34V

 Zn2+ (aq) + 2e- ------ Zn (s)      E0 = - 0.76V

Electrochemistry : 10.1 Galvanic Cell


Electrochemistry
  • Study of relationship between chemical change & electric work




    Oxidation
  • Loss of electron by species accompanied byn an increase in oxidation number

    Ex:






    Reduction
  • Gain electron by a species accompanied by a decrease number of oxidation
    Ex:


          Redox reaction
  • Process which there are net movement of electrons from one reactant to another
  • Also called oxidation – reduction process.
  • Oxidation and reduction occur at the same time.
    Ex:




    Oxidizing agent
    • Substance that accepts electron in redox reaction and undergoes decrease number of oxidation.
      O.A is Fe2O3


      Reducing agent
    • Substance that donate electron in redox reaction and undergoes an increase oxidation number.
      Ex:

      CO is an reducing agent

      Three key point
    • Oxidation always accompany by reduction
    • Oxidizing agent reduced reducing agent oxidised


ELECTROCHEMICAL CELL

There are two type :

  • Voltaic cell
  • Electrolytic cell


VOLTAIC CELL

  • Use spontaneous reaction to generate electric energy
  • System does work on surrounding
  • All batteries contains voltaic cell


ELECTROLYTIC CELL

  • Use electrical energy to drive non-spontaneous reaction
  • Surrounding do work on system
  • Ex: electroplating & recovering metal from ores


ELECTRODES

  • Object that conduct electricity between cell and surrounding
  • 2 electrode (anode & cathode) are dipped into electrolyte
  • ACTIVE ELECTRODES
  • Involve in half reaction
  • Ex: zinc (Zn), copper (Cu), Iron (Fe)


INACTIVE ELECTRODE
  • If no reactant or product can be uses as electrode
  • Ex: graphite (C), Platinum (Pt)
  • The electrolyte solution contain all species involved in the half – reaction 


ANODE & CATHODE

  • Oxidation half reaction takes place at cathode
  • Electron given up by substance being oxidised (reducing agent) and leave the cell at anode
  • Reducing half reaction takes place at cathode
  • Electron are taken up by substance being reduced (oxidizing agent) & enters the cell at cathode


ELECTROLYTE

  • Mixture of ions (usually in aqueos solution) that are involved in reaction or that carry charge.


ESSENTIAL IDEA OF VOLTAIC CELL

  • Component of each half reaction (half – cell) are placed in a seperate container
  • The two half cell are joined by circuit which consist a wire and a salt bridge


OXIDATION HALF CELL

  • Metal bar (anode) is immersd in Zn2+ electrolyte
    Ex: ZnSO4
  • Zn is reactant in oxidation half reaction
  • Zn conduct electricity and release electron out of its half cell
     
  • Mass of Zn electrode decrease


REDUCTION HALF CELL

  • A Cu metal bar (cathode) is immersed in a Zn2+ electrolyte
  • Ex: CuSO4 solution
  • Cu is a product in reduction half reaction
  • Cu conducts electricity and released electron into itself.
  • Mass of copper electrode increase


RELATIVE CHARGE ON ELECTRODES

  • Anode:
  • Electron flow from anode to cathode through wire
  • Cathode
  • Electron are continously generated at anode * consume at cathode


SALT BRIDGE

  • Contains a solution of non-reacting ion such as KCl,KNO3, Na2SO4 acts as liquid wire (allowing ions to flow & complete the circuit.






    HOW DOES THE CELL MAINTAIN ITS ELECTRICAL NEUTRALITY 
Anode Half Cell Cathode Half Cell 
Zn 2+ ions enters the solution causing the excess of positive charge.Cu2+ ions leave the solution causing the excess of negative charge
Cl- ions from the salt bridge move into anode (Zn) half cellK+ ions from salt bridge move into cathode Cu half cell

  

CELL NOTATION
  • Ex : Zn(s) l Zn2+ (aq) l l Cu2+ (aq) l Cu(s)
  • Anode left, cathode right
  • 'l' represent phase boundary
  • Use ',' for component that are in the same phase
    Graphite l I- (aq) l I(s) l l H+ (aq), MnO4- (aq), Mn2+ (aq) l graphite
  • Sometimes we specify the concentration of dissolved component
    Zn(s) l Zn2+ (1 M) l Cu2+ (1 M) l Cu(s)
  • Electrode appear ait far right and left notation.
  • Half-cell component usually appear in the same order as in the half-reaction


        Cu 2+ (aq) + 2e- ------ Cu (s)        (reducing)
                        Zn(s) ------ Zn2+ (aq) + 2e- (oxidizing)

    Cu 2+ (aq) + Zn(s) ------ Cu (s) + Zn2+ (aq) (overall)
Cell notation: the coefficient is not involved.

Thermochemistry : 9.3 Born-Haber Cycle

  • First Ionization Energy (IE1)
    • Energy required for 1 mol of gaseous atom to lose 1 mol of electrons.

  • Affinity Electron (EA) 
    • Energy change that occurs when 1 mol of gaseous atom gains 1 mol of electrons.

  • Lattice Energy
    • Energy change when 1 mol of solid ionic compound formed from its gaseous ions

  • Magnitude Lattice Energy
    • Indicates the strength of ionic bonding
    • The more negative lattice energy, the stronger ionic bonding
    • It influences : 
      • Melting point
      • Hardness
      • Solubility

  • Determining Lattice Energy
    • Lattice energy cannot be measured directly.
      • Can be calculated by Born-Haber cycle

  • Born-Haber Cycle
    • A series of chosen steps from elements to ionic compound for which all the enthalpies are known , except lattice energy.
      ΔH= sum of ΔHo for multistep path
    • Calculation Step

    Example : LiF

    Overall : Formation of LiF compound
        Li(s) + ½ F2(g)     LiF(s)        ΔHo
    overall = 617 kJ
            ΔHooverall = ΔHof
    Step 1 :- atomization of lithium
        Li(s)     Li(g)                ΔHf = 161 kJ
            ΔH1o = ∆Hoatom or ∆Hsublim

    Step 2 :- atomization of fluorine
        ½ F2(g)     F(g)             ∆H2o = 79.5 kJ
            ∆H2= ∆Hatom

    Step 3 :- ionization of lithium atom
        Li(g)         Li+(g) + e-         ∆H3o = 520 kJ
            ∆H3o = IE1

    Step 4 :- Electron affinity of F atom
        F(g) + e-     F(g)            ∆H4o = -328 kJ
            ∆H4o = EA

    Step 5 :- Formation of LiF(s) from its gaseous ions
        Li+(g) + F-(g)         LiF(s)        ∆H5= ?
            ∆H5o = ∆Holattice of LiF

  • Factors Affecting Lattice Energy
    • From Coulomb's Law
                             ΔE  α  (n+Q+)(n-Q-)
                                                    ---------------------------                                                          
                                                d

∆H : electrostatic energy
n+ : number
of positive charge
n: number of negative charge 
Q: electrostatic charge (+)
Q: electrostatic charge (-)
d : distance between the ions = r+ r(radius of ions)
  • Ionic bond strength increase when
    • Q, charge (Q) increase
    • Size of atoms (d) decrease
  • Hydration Process of Ionic Crystal in Water
    • 2 main process 
      • Breaking lattice energy of ionic crystal
      • Solvation (hydration)

Thermochemistry : 9.2 Hess Law


  • Hess's Law of Heat Summation
When reactants are converted to products, the change in enthalpy is the same whether the reaction take step in one step or in a series of step.

    ΔH1 =ΔH2 + ΔH3
  • Application Using Hess's Law
    • To find ΔH of any reaction for which we can write on equation, even if it is impossible to carry out.
    • Two methods of calculation
      • Algebraic method
      • Energy cycle method
  • Algebraic Method
    • Important steps:
      • Identify the target equation whose ΔH unknown.
      • Rearrange the equations given mole of reactants and products are on the correct side.
      • Add the equation to obtain the target equation all other substances must cancel.
  • Standard Enthalpy of Formation (ΔHf)
    • Heat change when 1 mol of a compound is produced from its elements in their standard states.
  • ΔHf
    of Elements
    • In its standard states
  • ΔHf of Compounds
    • Most compound have negative ΔHf
      • The compound is more stable than its components elements.
  • Determining ΔHrxn From ΔHf
    aA + bB = cC + dD

    Hrxn = [cΔHf (C) + dΔHf (D) – aΔHf (A) + bΔHf (B)]

    Hrxn = ( sum of ΔHf of all of the products ) – ( sum of ΔHf of all of the reactant )